Search results for " 05C12"

showing 3 items of 3 documents

A Note on Radio Antipodal Colouring of Paths

2005

International audience; The radio antipodal number of a graph G is the smallest integer c such that there exists an assignment f : V (G) -> {1, 2, . . . , c} satisfying |f(u) − f(v)| >= D − d(u, v) for every two distinct vertices u and v of G, where D is the diameter of G. In this note we determine the exact value of the antipodal number of the path, thus answering the conjecture given in [G. Chartrand, D. Erwin, and P. Zhang. Radio antipodal colorings of graphs, Math. Bohem. 127(1):57-69, 2002]. We also show the connections between this colouring and radio labelings.

[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]MSC 05C78 05C12 05C15[ INFO.INFO-DM ] Computer Science [cs]/Discrete Mathematics [cs.DM]distance labeling[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]radio numberradio antipodal colouring
researchProduct

Radio Labelings of Distance Graphs

2013

A radio $k$-labeling of a connected graph $G$ is an assignment $c$ of non negative integers to the vertices of $G$ such that $$|c(x) - c(y)| \geq k+1 - d(x,y),$$ for any two vertices $x$ and $y$, $x\ne y$, where $d(x,y)$ is the distance between $x$ and $y$ in $G$. In this paper, we study radio labelings of distance graphs, i.e., graphs with the set $\Z$ of integers as vertex set and in which two distinct vertices $i, j \in \Z$ are adjacent if and only if $|i - j| \in D$.

Graph labeling05C12 05C78Edge-graceful labeling0211 other engineering and technologies0102 computer and information sciences02 engineering and technology[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]01 natural sciencesCombinatoricsIndifference graphChordal graphradio k-labeling numberFOS: MathematicsDiscrete Mathematics and CombinatoricsMathematics - CombinatoricsGraph toughnessMathematicsDiscrete mathematicsResistance distanceApplied Mathematicsgraph labeling021107 urban & regional planning[ INFO.INFO-DM ] Computer Science [cs]/Discrete Mathematics [cs.DM]distance graph[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]010201 computation theory & mathematicsIndependent setdistance graph.Combinatorics (math.CO)MSC 05C12 05C78Distance
researchProduct

Packing colorings of subcubic outerplanar graphs

2018

Given a graph $G$ and a nondecreasing sequence $S=(s_1,\ldots,s_k)$ of positive integers, the mapping $c:V(G)\longrightarrow \{1,\ldots,k\}$ is called an $S$-packing coloring of $G$ if for any two distinct vertices $x$ and $y$ in $c^{-1}(i)$, the distance between $x$ and $y$ is greater than $s_i$. The smallest integer $k$ such that there exists a $(1,2,\ldots,k)$-packing coloring of a graph $G$ is called the packing chromatic number of $G$, denoted $\chi_{\rho}(G)$. The question of boundedness of the packing chromatic number in the class of subcubic (planar) graphs was investigated in several earlier papers; recently it was established that the invariant is unbounded in the class of all sub…

05C15 05C12 05C70Applied MathematicsGeneral Mathematics010102 general mathematics010103 numerical & computational mathematics[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]01 natural sciencesGraph[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]Combinatorics[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]IntegerOuterplanar graphBounded function[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]FOS: MathematicsBipartite graphMathematics - CombinatoricsDiscrete Mathematics and CombinatoricsCombinatorics (math.CO)0101 mathematicsInvariant (mathematics)ComputingMilieux_MISCELLANEOUSMathematicsAequationes mathematicae
researchProduct